1	$1600 = \frac{1}{3} \times \pi \times r^2 \times 25 \text{ oe}$		6	M1	for substituting into volume formula for cone correctly and equating to 1600
	eg $r = \sqrt{\frac{1600}{\frac{1}{3}\pi \times 25}}$ or			M1	dep for correct rearrangement of volume formula for r
	$r = \sqrt{\frac{192}{\pi}} (= \sqrt{61.1(154)} = 7.8176)$				
	$l = \sqrt{17.817^2 + 25^2} = \sqrt{686.1154} = 26.193$			M1	Dep on M2 correct method to find slant height of cone (radius of sector)
	2 × π× "7.817" (= 49.1196)			M1	for using $C = 2\pi r$ oe using figures from correct method
	or				or
	π×"7.817"×"26.193"(= 643.315)				for using $A = \pi r l$ using figures from correct method
	"49.1196" = $2 \times \pi \times$ "26.193" $\times \frac{x}{360}$			M1	for using arc length = $2\pi r \times \frac{x}{360}$
	or				or
	"643.315" = $\pi \times$ "26.193" $\times \frac{x}{360}$				for using area of sector =
	360				$\pi r^2 \times \frac{x}{360}$
		107°		Al	for 107° - 108°
					Total 6 marks

2	$[AM =]\sqrt{5^2 + 15^2} (= \sqrt{250} = 15.8)$ where <i>M</i> is midpoint of <i>EF</i> , oe other correct method to find <i>AM</i> $[AD =]\sqrt{12^2 + 15^2} (= \sqrt{369} = 19.2)$ $[DM =])\sqrt{12^2 - 5^2} (= \sqrt{119} = 10.9)$		4	M2	for a complete method to find two of AM , AD , DM (where M is the midpoint of EF) Other longer ways to find AM , AD , DM may be used but must be a complete method eg $\angle DEM = \cos^{-1}(\frac{5}{12})(=65.37)$ and $DM = 12\sin 65.37$ $\angle DEM = \cos^{-1}(\frac{5}{12})(=65.37)$ and $DM = 5\tan 65.37$ Use $10 \div 2$ as 5 throughout
				(M1	For a complete method to find one of AM , AD , DM (where M is the midpoint of EF))
	eg tan $DAM = \frac{"\sqrt{119}"}{"\sqrt{250}"} \left(= \frac{"10.9"}{"15.8"} \right)$ oe or sin $DAM = \frac{"\sqrt{119}"}{"\sqrt{369}"} \left(= \frac{"10.9"}{"19.2"} \right)$ oe or cos $DAM = \frac{"\sqrt{250}"}{"\sqrt{369}"} \left(= \frac{"15.8"}{"19.2"} \right)$ oe			M1	a correct method to find the required angle —other longer methods may be used but they must get to the stage of an equation for the required angle $\text{eg sin } DAM = \frac{"10.9"}{\sqrt{"15.8"^2 + "10.9"^2}}$ $\text{NB: "10.9" and "15.8" must come from correct working}$
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	34.6		A1	any answer which rounds to 34.6
					Total 4 marks

3	a	$(x =) 270 \div (12 \times 5) (= 4.5)$ oe		3	M1	
		$\pi \times 4.5^2 \times 2 \times 4.5 = 182.25\pi$ oe)			M1	ft dep on M1
			573		A1	accept 572 - 573
	b		1 000 000	1	B1	or $(1 \times) 10^6$ or (one or 1) million oe
						Total 4 marks

4	$\sin\left(\frac{180-140}{2}\right) = \frac{MB}{8} \text{ oe or } \cos\left(\frac{140}{2}\right) = \frac{MB}{8} \text{ oe}$		4	M1	for a correct expression with MB included, or an expression for MB^2
	or $\frac{8}{\sin 20} = \frac{AC}{\sin 140}$ and $(MB^2) = 8^2 - \left(\frac{"15.035"}{2}\right)^2$				If using sine or cosine rule on the isosceles triangle ABC , use of Pythagoras required to obtain an expression for MB^2
	or $AC = \sqrt{8^2 + 8^2 - 2 \times 8 \times 8 \times \cos 140}$ (=15.035)				
	and $(MB^2) = 8^2 - \left(\frac{"15.035"}{2}\right)^2$				
	$(MB =) 8\sin("20") (= 2.736) \text{ or } (MB =) 8\cos("70") (= 2.736)$			M1	•
	or $(MB) = \sqrt{8^2 - \left(\frac{"15.035"}{2}\right)^2}$				
	$\tan TMB = \frac{10}{"2.736"}$			M1	dep 1st M1
	"2.736"	74.7		A1	74.65 to 74.75
'					Total 4 marks

5	e.g. 30 × 20 × 125 (= 75 000) or 85 × 40 × 125 (= 425 000) or (60 × 30 + (85 - 30) × 40) × 125 (= 500 000) oe		4	M1	for a method to find the volume of water already pumped out or the volume of water left or the total volume of the container
	"75 000" ÷ 1.5 (= 50 000) or "75 000" ÷ 90 (= 833.3 or $\frac{2500}{3}$)			M1	M2 for $\frac{"425000"}{"75000"} \times 1.5$ oe (= 8.5)
	or "425000"÷"75000"(= 5.66 or $\frac{17}{3}$)				or "500000" × 1.5 oe (= 10)
	or "500000" ÷ "75000" (= 6.66 or $\frac{20}{3}$)				
	"425 000" ÷ "50 000" (= 8.5)			M1	
	or "425 000" ÷ ("833.3" × 60) oe (= 8.5)				
	or "5.66" × 1.5 (= 8.5) or "6.66" × 1.5 (= 10)				
		20 30		A1	Allow 8 30 (pm)
					Total 4 marks

6	e.g. $(V=)$ $\frac{1}{2} \left(\frac{4}{3}\pi x^3\right) + \pi x^2 (20-4x)$		5	M1	for a correct expression
	or $(V=)$ $\frac{2}{3}\pi x^3 + 20\pi x^2 - 4\pi x^3$				
	e.g. $\frac{1}{3}\pi y = \frac{1}{2} \left(\frac{4}{3}\pi x^3 \right) + \pi x^2 (20 - 4x)$			M1	for a correct equation
	or $\frac{1}{3}\pi y = \frac{2}{3}\pi x^3 + 20\pi x^2 - 4\pi x^3$				
	$y = 60x^2 - 10x^3$ oe			A1	for writing y in terms of x
	e.g. $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 120x - 30x^2 = 0$ oe			Ml	for differentiating their $ax^2 + bx^3$ and equating to 0
		320		A1	(dep on M3) cao
					Total 5 marks

7	(a)	$\left(\frac{37+28}{2}\right) \times 20 (=650)$ $\sqrt{4.5^2 + 20^2} (=20.5) \text{ oe}$		4	M1 M1	Correct method to find area of trapezium Correct method to find slanted edge <i>AB</i> oe
		2 × '650' + 2 × '20.5' × 24 + 37 × 24 + 28 × 24 (2 × '650' + 2 × 492 + 888 + 672)			M1	method to find the sum of the surface areas of at least 4 correct faces (ft their area of trapezium) ignore incorrect areas
			3844		A1	
	(b)	eg $\sqrt{24^2 + (37 - 4.5'')^2}$ (= 40.4) ($AF = \sqrt{24^2 + 20^2 + (37 - 4.5'')^2}$ (= 45.08)		3	M1	Correct method to find diagonal from A to point on HE below F or AF
		$\tan x = \frac{20}{"40.4"}$ or $\sin x = \frac{20(\sin 90)}{"45.08"}$ or			M1	Correct trig statement for finding the required angle
		$\cos x = \frac{\text{"40.4"}^2 + \text{"45.08"}^2 - 20^2}{2 \times \text{"40.4"} \times \text{"45.08"}}$				
			26.3		A1	26.3 – 26.4
	•					Total 7 marks

8	eg $(BV^2 =)3^2 + 6^2 (= 45)$ or $(CT^2 =)3^2 + 6^2 (= 45)$ or $(DH^2 =)6^2 + 6^2 (= 72)$ or $(MV^2 =)3^2 + 3^2 (= 18)$		4	M1	a correct expression for eg BV^2 or CT^2 or DH^2 or MV^2 where M is the midpoint of DC or a correct expression for [length] ² for any length in the cube using Pythagoras	M3 for $(VT =)\sqrt{6^2 + 3^2 + 3^2}$ $(= 3\sqrt{6} \text{ or } 7.34)$ (M2 for $(VT^2 =)$
	eg $(BV =)\sqrt{3^2 + 6^2} \left(= \sqrt{45} \text{ or } 3\sqrt{5} \text{ or } 6.70 \right)$ or $(CT =)\sqrt{3^2 + 6^2} \left(= \sqrt{45} \text{ or } 3\sqrt{5} \text{ or } 6.70 \right)$ or $(DH =)\sqrt{6^2 + 6^2} \left(= \sqrt{72} \text{ or } 6\sqrt{2} \text{ or } 8.48 \right)$ or $(MV =)\sqrt{3^2 + 3^2} \left(= \sqrt{18} \text{ or } 3\sqrt{2} \text{ or } 4.24 \right)$			M1	for a complete method for eg BV or CT or DH or MV or any length in the cube using Pythagoras	$6^2 + 3^2 + 3^2 (= 54)$
	$(VT =) \sqrt{45+3^2} \text{ or } \sqrt{\left(\frac{\sqrt{72}}{2}\right)^2 + 6^2}$ or $\sqrt{18+6^2} \text{ or } 3\sqrt{6} \text{ or } 7.34$			M1	for a correct expression for VT (condone missing brackets around $3\sqrt{5}$ or $3\sqrt{2}$ or $\frac{\sqrt{72}}{2}$)	
		√54		A1	if $\sqrt{54}$ seen and answer then given as 3 full marks	$\sqrt{6}$ isw and award
						Total 4 marks

9	eg $\frac{4}{3}\pi r^3 \div 2(=\frac{2}{3}\pi r^3)$ oe		6	M1	for finding the volume of hemisphere
,	eg $\frac{1}{3}\pi(kr)^2kh - \frac{1}{3}\pi r^2h(=\frac{1}{3}\pi r^2h(k^3-1))$ oe			M1	for finding the volume of the frustum
	eg $\frac{1}{3}\pi r^2 h(k^3 - 1) + \frac{2}{3}\pi r^3$ or $\frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$ oe			M1	for a correct expression for the volume of Solid A or Solid B
	eg $\frac{1}{3}\pi r^2 h(k^3 - 1) + \frac{2}{3}\pi r^3 = 6\left(\frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3\right)$ oe			M1	for a correct equation using the volumes of Solid A and Solid B (π could be cancelled out)
	eg $h(k^3 - 1) - 6h = 12r - 2r$ oe			M1	for simplifying to a point where the <i>h</i> terms are on one side of an equation and other terms the other side – must be correct
	NB: note that simplest form was not required	$\frac{10r}{k^3 - 7}$		A1	oe eg $\frac{4r - \frac{2}{3}r}{\frac{1}{3}k^3 - 2\frac{1}{3}}$
					Total 6 marks

10	$580\pi = \pi \times 20 \times l \text{ oe}$		5	M1 for correct substitution into $A = \pi rl$
	$(l=)\frac{580\pi}{20\pi}(=29)$			M1
	$\sqrt{"29"^2 - 20^2} \left(= \sqrt{441} = 21 \right)$			M1
	$\left(\frac{1}{2} \times \frac{4}{3} \times \pi \times 20^{3}\right) + \left(\frac{1}{3} \times \pi \times 20^{2} \times "21"\right) \text{ or }$ $\frac{16\ 000}{3} \pi + \frac{8400}{3} \pi \text{ or }$ $\frac{16\ 000}{3} \pi + 2800\pi$			M1 for a complete method (Award M4 for 8133.3 if $\frac{24 400}{3}$ is not seen)
		24 400 3		A1 8133.3 or 8133 $\frac{1}{3}$ (as exact form was requested) SC B4 for an answer of 25551(.62) if no method shown
				Total 5 marks

11	$\pi x^{2} + 2\pi x \times 3x + \frac{1}{2} \times 4\pi x^{2} = 81\pi \text{ oe or}$ $9x^{2} = 81\text{ oe}$ $\text{or } 2\pi x \times 3x + \frac{1}{2} \times 4\pi x^{2} = 81\pi \text{ oe or } 8x^{2} = 81$		6	M1 for setting up an equation (in a single variable ie x or r) for the total surface area of the shape or for the curved surface area.
	$\left(x=\right)\sqrt{\frac{81}{9}}\left(=3\right)$			M1 solving their equation in the form $kx^2\pi = 81\pi$ (where k follows correctly from their surface area) to find x
	$\pi \times 3^{2} \times 3 \times 3^{1} + \frac{1}{2} \times \frac{4}{\pi} 3^{3} \text{ oe}$ $(= 81\pi + 18\pi = 99\pi = 311.(017))$			M1 (indep) for substituting their value of <i>x</i> to find the volume of the shape.
	$99\pi \text{ or } 311.(017)$			Al
	840 '311' (= 2.7) oe			M1 (dep on the 3rd M) for using the formula for density
		aluminium		A1 for aluminium and correct working leading to 2.7
				Total 6 marks

12			3	M1	For area of 2 different faces (ie not
					2 triangles)
	$0.5 \times 4.8 \times 3.6$ (= 8.64) oe or 4.8×3.6 if clear intention for			M1	For adding together 5 areas, at
	this to be 2 triangles				least 4 of which are correct
	$7 \times 3.6 \ (=25.2)$				
	$7 \times 4.8 (= 33.6)$				NB: $(3.6 + 4.8 + 6) \times 7 (= 100.8)$
	$7 \times 6 (= 42)$				is 3 faces
	(all measurements with intention to add)				
	Correct answer scores full marks (unless from obvious	118		A1	118.1 or 118.08
	incorrect working)				
					Total 3 marks

13	$eg k \times \frac{1}{\beta} \pi r^{2} h = \frac{4}{\beta} \pi r^{3} \text{ or } k \times \frac{1}{\beta} \pi r^{2} h = \frac{4}{\beta} \pi r^{8}$ $or k \times \frac{1}{3} \pi r^{2} h = \frac{4}{3} \pi r^{8} \text{ or } k \times h = 4r$		6	M1	for setting up an equation with volumes and some simplification (minimum of 2 terms simplified)
	$h = \frac{4r}{k}$			M1	for finding h in terms of r and k in its simplest form (may be seen at a later stage)
	eg $l^2 = r^2 + \left(\frac{4r}{k}\right)^2$ or $l = \sqrt{r^2 + \left(\frac{4r}{k}\right)^2}$			M1	for correct substitution into Pythagoras' theorem (accept substitution of $h = \frac{4\pi r}{\pi k}$)
	eg $l = r\sqrt{1 + \frac{16}{k^2}}$ or $l = r\sqrt{\frac{k^2 + 16}{k^2}}$ or $l = r\frac{\sqrt{k^2 + 16}}{k}$			M1	for rearranging and removing the r from the square root (may be seen at a later stage)
	$\operatorname{eg} \pi r^2 \left(\sqrt{1 + \frac{16}{k^2}} + 1 \right)$			M1	for a correct expression for surface area in terms of r and k with πr^2 removed as a factor
	Correct answer scores full marks (unless from obvious incorrect working)	$\pi r^2 \left(\frac{k + \sqrt{k^2 + 16}}{k} \right)$		A1	
					Total 6 marks

14	$r = \sqrt{\frac{49\pi}{4\pi}}$ oe (= 3.5)		3	M1	
	$[\text{volume} =] \frac{4}{3} \times \pi \times "3.5"^3$			M1	
	Correct answer scores full marks (unless from obvious incorrect working)	180		A1	awrt 180
					Total 3 marks